题目内容
【题目】已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).
(1)求出b、c的值,并写出此二次函数的解析式;
(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;
(3)当2≤x≤4时,求y的最大值.
【答案】
(1)解:把(﹣1,0),(0,3)代入y=﹣x2+bx+c,
得
解得 ,
所以二次函数的解析式为:y=﹣x2+2x+3
(2)解:把x=0代入y=﹣x2+bx+c中,
得﹣x2+bx+c=0,
解得x1=﹣1,x2=3,
所以当﹣1<x<3,y>0
(3)解:由y=﹣x2+2x+3
=﹣(x﹣1)2+4,
抛物线的对称轴为直线x=1,
则当2≤x≤4时,y随着x的增大而减小,
∴当x=2时,y的最大值是3
【解析】(1)因为点(﹣1,0),(0,3)在抛物线y=﹣x2+bx+c上,可代入确定b、c的值;(2)求出抛物线与x轴的交点坐标,根据图象确定y>0时,x的取值范围;(3)根据二次函数的增减性,确定2≤x≤4时,y的最大值.
【考点精析】掌握二次函数的图象和二次函数的最值是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.
练习册系列答案
相关题目