题目内容
【题目】已知:如图∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.
⑴试说明:BE=CF;
⑵若AF=3,BC=4,求△ABC的周长.
【答案】(1)证明详见解析;(2)10.
【解析】试题分析:(1)连接DB、DC,根据角平分线性质和垂直平分线的性质得:DE=DF,DB=DC,证明Rt△BED≌Rt△CFD(HL),得出结论;
(2)先证明△AED≌△AFD,得AF=AE=3,再将△ABC的周长进行等量代换,即△ABC的周长=AB+AC+BC=AE+EB+AF﹣CF+BC,代入求值即可.
试题解析:连接DB、DC,
(1)∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵DG垂直平分BC,
∴DB=DC,
在Rt△BED和Rt△CFD中,
DE=DF,BD=CD,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)∵∠DAE=∠DAF,∠AED=∠AFD=90°,AD=AD,
∴△AED≌△AFD,
∴AF=AE=3,
由(1)得:BE=CF,
∴△ABC的周长=AB+AC+BC=AE+EB+AF﹣CF+BC=AE+AF+BC=3+3+4=10.
练习册系列答案
相关题目