题目内容
【题目】如图,在△ABC中,AD,BE分别是∠BAC,∠ABC的角平分线.
(1)若∠C=70°,∠BAC=60°,则∠BED的度数是 ;若∠BED=50°,则∠C的度数是 .
(2)探究∠BED与∠C的数量关系,并证明你的结论.
【答案】(1)55°,80°;(2)∠BED=90°﹣∠C
【解析】
(1)根据三角形的内角和得到∠ABC=50°,根据角平分线的定义得到∠CAD=∠BAC=30°,∠DBE=∠ABC=25°,根据三角形的内角和即可得到结论;
(2)根据角平分线的定义和三角形的内角和即可得到结论.
(1)∵∠C=70°,∠BAC=60°,
∴∠ABC=50°,
∵AD,BE分别是∠BAC,∠ABC的角平分线,
∴∠CAD=∠BAC=30°,∠DBE=∠ABC=25°,
∵∠ADB=∠DAC+∠C=100°,
∴∠BED=180°﹣100°﹣25°=55°,
∵∠BED=50°,
∴∠ABE+∠BAE=50°,
∴∠ABC+∠BAC=2×50°=100°,
∴∠C=80°;
故答案为:55°,80°;
(2)∵AD,BE分别是∠BAC,∠ABC的角平分线,
∴∠ABE=∠ABC,∠BAE=∠BAC,
∵∠BED=∠ABE+∠BAE=(∠ABC+∠BAC)=(180°﹣∠C)=90°﹣∠C.
练习册系列答案
相关题目