题目内容
【题目】如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.
(1)求∠AON的度数.
(2)写出∠DON的余角.
【答案】(1)65°;(2)∠DOM,∠BOM.
【解析】
(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可;
(2)根据题意得到,∠DOM为∠DON的余角.
(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,
∴∠BOD=∠AOC=50°,
∵OM平分∠BOD,
∴∠BOM=∠DOM=25°,
又由∠MON=90°,
∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;
(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,
∵∠AON+∠BOM=90°,∠DOM=∠MOB,
∴∠AON+∠DOM=90°,
∴∠NOD+∠BOM=90°,
故∠DON的余角为:∠DOM,∠BOM.
练习册系列答案
相关题目