题目内容

【题目】如图,四边形ABCDBEFG均为正方形,

(1)如图1,连接AGCE,试判断AGCE的数量和位置关系并证明.

(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AGCE相交于点M,连接MB,当角β发生变化时,EMB的度数是否发生变化?若不变化,求出EMB的度数;若发生变化,请说明理由.

(3)在(2)的条件下,过点AANMBMB的延长线于点N,请直接写出线段CMBN的数量关系.

【答案】详见解析.

【解析】试题分析:

(1)判断的数量关系,可通过求解.判断的位置关系,可延长于点,求即可。

2,理由是:过点,利用得出,由全等三角形得到面积相等,,可得出,由到角两边距离相等的点在角的平分线上得的角平分线,再由,及一对对顶角相等,可得,利用角平分线的定义即可求解.

3.如备用图,在上截取,由可得为等腰直角三角形,由勾股定理得,然后证,因为(理由:;由问题2;以及正方形的边.可得全等).根据全等三角形的对应边相等即可求证.

试题解析:

解:(1理由如下:如上图1

四边形BEFGABCD为正方形

延长于点

(2),理由如下:如上图2

过点

平分

3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网