题目内容
【题目】如图,直线是线段的垂直平分线,交线段于点,在下方的直线上取一点,连接,以线段为边,在上方作正方形,射线交直线于点,连接.
(1)设,求的度数;
(2)写出线段、之间的等量关系,并证明.
【答案】(1)45° ;(2),证明见解析.
【解析】
(1)由线段的垂直平分线的性质可得PM=PN,且PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM=α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形的外角性质可求∠AMN的度数;
(2)由等腰直角三角形的性质和正方形的性质可得MN=CN,AN=BN,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得AM=BC.
(1)如图,连接MP,
∵直线l是线段MN的垂直平分线,
∴PM=PN,且PO⊥MN
∴∠PMN=∠PNM=α
∴∠MPO=∠NPO=90°-α,
∵四边形ABNP是正方形
∴AP=PN,∠APN=90°
∴AP=MP,∠APO=90°-(90°-α)=α
∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,
∵AP=PM
∴∠PMA=∠PAM= =45°+α,
∴∠AMN=∠AMP-∠PMN=45°+α-α=45°
(2)AM=BC
理由如下:
如图,连接AN,CN,
∵直线l是线段MN的垂直平分线,
∴CM=CN,
∴∠CMN=∠CNM=45°,
∴∠MCN=90°
∴MN=CN,
∵四边形APNB是正方形
∴∠ANB=∠BAN=45°
∴AN=BN,∠MNC=∠ANB=45°
∴∠ANM=∠BNC
又∵
∴△CBN∽△MAN
∴
∴AM=BC
【题目】丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根据以上信息,回答下列问题:
(1)补全数学成绩频数分布直方图;
(2)写出表中m、n的值;
(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).