题目内容
【题目】如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.
【答案】
【解析】
如图,连接EC,作AH⊥BC于H.首先证明EC⊥BC,推出EN⊥EC时,EN的值最小,解直角三角形求出CH,DH即可解决问题;
解:如图,连接EC,作AH⊥BC于H.
∵△ABC∽△ADE,
∴∠AED=∠ACD,
∴A,D,C,E四点共圆,
∴∠DAE+∠DCE=180°,
∴∠DCE=∠DAE=90°,
∴EC⊥BC,
∴NE⊥EC时,EN的值最小,作AG⊥CE交CE的延长线于G.
在Rt△ABC中,∵BC=5,AB=3,
∴AC=4,
∵△ENC∽△△ACB,
∴,
∴,
∴EC=,
∴AH=CG=,
∵NE∥AG,AN=NC,
∴GE=EC=,
∵∠HAG=∠DAE,
∴∠DAH=∠EAG,
∵∠AHD=∠G=90°,
∴△AHD∽△AGE,
∴,
∴,
∴DH=,
∴CD=DH+CH=.
故答案为.
练习册系列答案
相关题目