题目内容

如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A、B(A在B的右边)。

(1)求抛物线的解析式;
(2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。
(1);(2);(3)

试题分析:(1)已知,当x=2时,抛物线的最小值为-1,因此抛物线的顶点坐标为(2,-1);可用顶点式来设抛物线的解析式,然后将C的坐标代入即可求出抛物线的解析式.
(2)由于EF∥OC,那么∠FED=45°,因此要使三角形EFD与三角形COA相似,只有两种情况:当D为直角顶点时,∠EDF=90°,由于D是AC中点,而FD⊥AC,三角形AOC又是个等腰直角三角形,因此DF正好在∠COA的平分线上,即DF在直线y=x上,此时可先求出直线AC的函数关系式,然后联立抛物线的解析式求出F的坐标,由于E、F的横坐标相同,将F的横坐标代入AC所在的直线的解析式中即可求出E点的坐标.
(3)当F为直角顶点时,∠EFD=90°,那么DF与三角形AOC的中位线在同一直线上,即DF所在的直线的解析式为y=2,然后可根据(2)的方法求出p点的坐标.
(1)由题意可设抛物线的关系式为
y=a(x-2)2-1
因为点C(0,3)在抛物线上
所以3=a(0-2)2-1,即a=1
所以,抛物线的关系式为
(2)令y=0,即x2-4x+3=0,
得点A(3,0),B(1,0),线段AC的中点为D(
直线AC的函数关系式为y=-x+3
因为△OAC是等腰直角三角形,
所以,要使△DEF与△AOC相似,△DEF也必须是等腰直角三角形.
由于EF∥OC,因此∠DEF=45°,
所以,在△DEF中只可能以点D、F为直角顶点.
当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为y=


当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点,
因此,DF所在直线过原点O,其关系式为y=x.


当∠DFE=90°时,E1,当∠EDF=90°时,E2
(3)

点评:解题的关键是要注意的是(3)中在不确定△EDF的直角顶点的情况下要分类进行讨论,不要漏解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网