题目内容
如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)(1,0)(2)y=2x-4x-6 (3)存在
试题分析:【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G
∵AH∥EF∥DG,AD∥GH
∴四边形AHFE和四边形DEFG都是平行四边形
∴FH=AE,FG=DE
∵AE=DE
∴FG=FH
∵AB∥DG
∴∠G=∠FHB,∠GCF=∠B
∴△CFG≌△BFH
∴FC=FB 4分
【知识应用】过点C作CM⊥x轴于点M,过点A作AN⊥x轴于点N,过点B作BP⊥x轴于点P
则点P的坐标为(x,0),点N的坐标为(x,0)
由探究的结论可知,MN=MP
∴点M的坐标为(,0)
∴点C的横坐标为
同理可求点C的纵坐标为
∴点C的坐标为(,) 8分
【知识拓展】
当AB是平行四边形一条边,且点C在x轴的正半轴时,AD与BC互相平分,设点C的坐标为(a,0),点D的坐标为(0,y)
由上面的结论可知:-6+a=4+0,-1+0=5+b
∴a=10,b=-6
∴此时点C的坐标为(10,0),点D的坐标为(0,-6)
同理,当AB是平行四边形一条边,且点C在x轴的负半轴时
求得点C的坐标为(-10,0),点D的坐标为(0,6)
当AB是对角线时
点C的坐标为(-2,0),点D的坐标为(0,4) 14
点评:本题考查抛物线的知识,要求考生会用待定系数法求抛物线的解析式,掌握抛物线的性质
练习册系列答案
相关题目