题目内容
【题目】如图,PA,PB是⊙O的两条切线,A,B是切点,AC是⊙O的直径.
(1)若∠ACB=70°,求∠APB的度数;
(2)连接OP,若AB=8,BC=6,求OP的长.
【答案】(1)∠APB=40°;(2)
【解析】
(1)利用直径所对的圆周角是直角,切线的性质定理证明∠PAB=∠ACB=∠PBA,利用三角形的内角和可得到结论;
(2)连接OP,交AB于点D,证明∠POA=∠ACB,利用等角的三角函数值相等,可得到结论.
解:(1)∵PA,PB是⊙O的两条切线
∴PA⊥OA,PA =PB
∵ AC为是⊙O的直径
∴∠ABC=90°
∴∠ACB+∠BAC=90°
又∵∠PAB+∠BAC=90°
∴∠PAB=∠ACB=∠PBA=70°
∴∠APB=40°
(2)连接OP,交AB于点D
在Rt△ABC中,
∴AC==10,AO=5
∵PA,PB是⊙O的两条切线
∴PO平分∠APB
又∵PA =PB,
∴BD=AD=4,PO⊥AB,
∴PO∥BC
∴∠POA=∠ACB
∴===
∴===
∴PO =
【题目】如图,是与弦所围成图形的外部的一定点,是弦上的一动点,连接交于点.已知,设,两点间的距离为,,两点间的距离为,,两点间的距离为.
小石根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:
(1)按照下表中自变量的值进行取点、画图、测量分别得到了,与的几组对应值:
0 | 1 | 2 | 3 | 4 | 5 | 5.40 | 6 | |
4.63 | 3.89 | 2.61 | 2.15 | 1.79 | 1.63 | 0.95 | ||
1.20 | 1.11 | 1.04 | 0.99 | 1.02 | 1.21 | 1.40 | 2.21 |
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,并画出函数,的图象;
(3)结合函数图象,解决问题:当为的中点时,的长度约为______.