题目内容

【题目】如图,在RtABC中,∠ABC=90°,ABBCDAC上一点,AEBD,交BD的延长线于ECFBDF.

(1)求证:CFBE

(2)BD=2AE,求证:∠EADABE.

【答案】(1)见解析;(2)见解析.

【解析】1)根据已知条件证明ABE≌△BCF即可求证CF=BE.

(2)由(1)可知:∠ABE=BCF,且AE∥CF所以∠EAD=∠ACF,只需证明∠ABE=BCF=ACF即可证明出∠EAD=ABE.

证明:(1)∵∠ABC=90°,CFBD,AEBD,

∴∠ABE+EBC=90°=EBC+BCF,

∴∠ABE=BCF.

又∵∠AEB=BFC=90°,AB=CB,

∴△ABE≌△BCF,

CF=BE.

(2)(1)ABE≌△BCF,

BF=AE,ABE=BCF.又∵BD=BF+FD=2AE,

BF=DF.

又∵CFBDF,CB=CD,

CF平分∠ACB.

又∵∠AEB=CFD=90°,

AECF,∴∠EAD=ACF.

∵∠ABE=BCF=ACF,

∴∠EAD=ABE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网