题目内容

1
2
+(
1
3
+
2
3
)+(
1
4
+
2
4
+
3
4
)+(
1
5
+
2
5
+
3
5
+
4
5
)+…+(
1
50
+
2
50
+…+
48
50
+
49
50
)
=______.
设s=
1
2
+(
1
3
+
2
3
)+(
1
4
+
2
4
+
3
4
)+(
1
5
+
2
5
+
3
5
+
4
5
)+…+(
1
50
+
2
50
+…+
48
50
+
49
50
)
,①
又s=
1
2
+(
2
3
+
1
3
)+(
3
4
+
2
4
+
1
4
)+(
4
5
+
3
5
+
2
5
+
1
5
)+(
49
50
+
48
50
++
1
50
)
,②
①+②,得
2s=1+2+3+4+…+49,③
2s=49+48+47+…+2+1,④
③+④,得
4s=50×49=2450,故s=612.5;
故答案为:612.5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网