题目内容

【题目】某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).
(1)求该厂第2个月的发电量及今年下半年的总发电量;
(2)求y关于x的函数关系式;
(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?

【答案】
(1)解:由题意,得

第2个月的发电量为:300×4+300(1+20%)=1560(万千瓦),

今年下半年的总发电量为:300×5+1560+300×3+300×2×(1+20%)+300×2+300×3×(1+20%)+300×1+300×4×(1+20%)+300×5×(1+20%)

=1500+1560+1620+1680+1740+1800

=9900(万千瓦).

答:该厂第2个月的发电量为1560万千瓦;今年下半年的总发电量为9900万千瓦;


(2)解:设y与x之间的关系式为y=kx+b(k≠0),由题意,得

解得:

∴y=60x+1440(1≤x≤6).


(3)解:设到第n个月时ω1>ω2

当n=6时,ω1=9900×0.04﹣20×6=276,ω2=300×6×6×0.04=432,ω1<ω2不符合.

∴n>6.

∴ω1=[9900+360×6(n﹣6)]×0.04﹣20×6=86.4n﹣242.4,

ω2=300×6n×0.04=72n.

当ω1>ω2时,86.4n﹣242.4>72n,解得n>16.8,

∴n=17.

答:至少要到第17个月ω1超过ω2


【解析】(1)由题意可以知道第1个月的发电量是300×5万千瓦,第2个月的发电量为[300×4+300(1+20%)]万千瓦,第3个月的发电量为[300×3+300×2×(1+20%)]万千瓦,第4个月的发电量为[300×2+300×3×(1+20%)]万千瓦,第5个月的发电量为[300×1+300×4×(1+20%)]万千瓦,第6个月的发电量为[300×5×(1+20%)]万千瓦,将6个月的总电量加起来就可以求出总电量.(2)由总发电量=各台机器的发电量之和根据(1)的结论设y与x之间的关系式为y=kx+b建立方程组求出其解即可;(3)由总利润=发电盈利﹣发电机改造升级费用,分别表示出ω1 , ω2 , 再根据条件建立不等式求出其解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网