题目内容
【题目】如图所示,平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.在不改变矩形ABCD的形状和大小的情况下,当矩形的顶点A在x轴的正半轴上左右移动时,另一个顶点D始终在y轴的正半轴上随之上下移动.
(1)当∠OAD=30°时,求点C的坐标;
(2)设AD的中点为M,连接OM、MC,若四边形OMCD的面积为时,求OA的长;
(3)在点A移动过程中是否存在某一位置,使点C到点O的距离有最大值?若存在,求此时的值;若不存在,请说明理由.
【答案】(1)点的坐标为;(2);(3)存在,的最大值为8.
【解析】
(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;
(2)先求出S△DCM=6,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;
(3)由M为AD的中点,知OM=3,CM=5, OM+CM=8,分两种情况,即当O、M、C三点不在同一条直线和三点共线时,分别进行判断解决即可.
(1)如图1,过点C作CE⊥y轴于点E,
∵矩形ABCD中,CD⊥AD,
∴∠CDE+∠ADO=90°,
又∵∠OAD+∠ADO=90°,
∴∠CDE=∠OAD=30°,
∴在Rt△CED中,CE=CD=2,DE==2,
在Rt△OAD中,∠OAD=30°,
∴OD=AD=3,
∴点C的坐标为(2,3+2);
(2)∵M为AD的中点,
∴DM=3,S△DCM=6,
又S边形OMCD=,
∴S△ODM=,
∴S△OAD=9,
设OA=x、OD=y,则x2+y2=36,xy=9,
∴x2+y2=2xy,即x=y,
将x=y代入x2+y2=36得x2=18,
解得x=3 (负值舍去),
∴OA=3;
(3)OC的最大值为8,
如图2,M为AD的中点,
∴OM=3,CM==5,
∴OM+CM=8.
当O、M、C三点不在同一条直线时,在△OCM中,
OC<OM+CM=8.
当A点运动,使得O、M、C三点在同一直线时,
此时OC= OM+CM=8,为OC的最大值.
【题目】某超市一段时期内对某种商品经销情况进行统计得到该商品的销售数量(件)由基础销售量与浮动销售量两个部分组成,其中基本销售量保持不变,浮动销售量与售价(元/件,)成反比例,销售过程中得到的部分数据如下:
售价 | 8 | 10 |
销售数量 | 70 | 58 |
(1)求与之间的函数关系式;
(2)当该商品销售数量为50件时,求每件商品的售价;
(3)设销售总额为,求的最大值.