题目内容

如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上.
(1)如果AD⊥BC,BE⊥AC,试证明∠APE=60°的理由;
(2)如果BD=EC,那么“∠APE=60°”是否还能成立?请说明理由.
分析:(1)根据等腰三角形的三线合一,可知∠DAC=30°,在直角△AEP中,即可得出∠APE=60°;
(2)易证△ABD≌△BCE,得∠BAD=∠CBE,又∠CBE+∠ABE=60°,则∠BAD+∠ABE=60°,根据三角形外角的性质,可得∠APE=60°;
解答:(1)证明:∵△ABC是等边三角形中,AD⊥BC,BE⊥AC,
∴∠DAC=30°,
∴在直角△AEP中,
∠APE=90°-30°=60°;

(2)解:仍然成立.理由如下:
在△ABD和△BCE中,
AB=BC
∠ABD=∠BCE
BD=CE

∴△ABD≌△BCE,
∴∠BAD=∠CBE,又∠CBE+∠ABE=60°,
∴∠APE=∠BAD+∠ABE=60°.
点评:本题主要考查了等边三角形的性质和全等三角形的判定与性质,应熟记等腰三角形的三线合一及证明三角形全等的几个判定方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网