题目内容
【题目】用适当方法解下列方程.
(1)x2﹣6x+5=0;
(2)2x2+3x﹣5=0.
【答案】
(1)
解:(x﹣5)(x﹣1)=0,
(x﹣5)=0或(x﹣1)=0,
所以x1=5,x2=1;
(2)
解:2 x2+3x﹣5=0;
∵a=2,b=3,c=﹣5,
∴△=b2﹣4ac=9+40=49>0
∴x= = ,
∴x1=1,x2=﹣ .
【解析】(1)利用因式分解法解方程;(2)利用求根公式法解方程.
【考点精析】本题主要考查了公式法和因式分解法的相关知识点,需要掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势才能正确解答此题.
练习册系列答案
相关题目