题目内容
已知关于x的一元二次方程x2﹣mx﹣2=0.
(1)若x=﹣1是方程的一个根,求m的值和方程的另一根;
(2)对于任意实数m,判断方程的根的情况,并说明理由.
如图,菱形ABCD的对角线AC、BD相交于点O,AC=16,BD=12,以AB为直径作一个半圆,则图中阴影部分的面积为___________.
下列物体是由六个棱长为1cm的正方体组成如图的几何体。分别画出从正面、左面、上面看到的立体图形的形状。
如图,共有线段( )
A. 3条 B. 4条 C. 5条 D. 6条
如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为_____.
如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是( )
A. 50° B. 60° C. 70° D. 80°
若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2 .
如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.