题目内容
如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为_____.
有一组数据x1,x2,…xn的平均数是2,方差是1,则3x1+2,3x2+2,…+3xn+2的平均数和方差分别是( )
A. 2,1 B. 8,1 C. 8,5 D. 8,9
11°23′26″×3.
如图,是由相同小正方体组成的立体图形,它的主视图为( )
A. B. C. D.
已知关于x的一元二次方程x2﹣mx﹣2=0.
(1)若x=﹣1是方程的一个根,求m的值和方程的另一根;
(2)对于任意实数m,判断方程的根的情况,并说明理由.
(题文)如图,AP为⊙O的切线,P为切点,若∠A=20°,C,D为圆周上两点,且∠PDC=60°,则∠OBC等于( )
A. 55° B. 65° C. 70° D. 75°
把方程x2-4x-1=0配方后得到的方程是( )
A. (x+2)2=3 B. (x+2)2=5 C. (x-2)2=3 D. (x-2)2=5
汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是( )
A. 以相同速度行驶相同路程,甲车消耗汽油最多
B. 以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米
C. 以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少
D. 以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油
某校为了解八年级学生一学期参加公益活动的时间情况,抽取50名八年级学生为样本进行调查,按参加公益活动的时间t(单位:小时),将样本分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8),绘制成尚不完整的条形统计图.
(1)样本中,E类学生有 人,请补全条形统计图;
(2)该校八年级共600名学生,求八年级参加公益活动时间6<t≤8的学生数;
(3)从样本中选取参加公益活动时间在0≤t≤4的2人做志愿者,求这2人参加公益活动时间都在2<t≤4中的概率.