题目内容

【题目】已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,求证:BD⊥CF.BD=CF.

(2)如图2,当点D在线段BC的延长线上时,其它条件不变,第(1)问结论还成立吗?并说明理由.

(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:

①请直接写出CF、BC、CD三条线段之间的关系.
②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.

【答案】
(1)

证明:∵∠BAC=90°,AB=AC,

∴∠ABC=∠ACB=45°,

∵四边形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,

∴∠BAD=∠CAF,

在△BAD和△CAF中,

∴△BAD≌△CAF(SAS),

∴BD=CF,∠ACF=∠ABD=45°,

∴∠ACF+∠ACB=90°,

∴BD⊥CF;


(2)

(1)的结论仍然成立,理由:

∵∠BAD=∠BAC+∠CAD=90°+∠CAD,

∠CAF=∠DAF+∠CAD=90°+∠CAD,

∴∠BAD=∠CAD,

在△BAD和△CAF中,

∴△BAD≌△CAF(SAS),

∴BD=CF,∠ACF=∠ABD=45°

∴∠BCF=∠ACB+∠ACF=45°+45°=90°

∴BD⊥CF.


(3)

①BC、CD与CF的关系:CD=BC+CF

理由:与(1)同法可证△BAD≌△CAF,从而可得:

BD=CF,

即:CD=BC+CF

②△AOC是等腰三角形

理由:与(1)同法可证△BAD≌△CAF,可得:∠DBA=∠FCA,

又∵∠BAC=90°,AB=AC,

∴∠ABC=∠ACB=45°,

则∠ABD=180°﹣45°=135°,

∴∠ABD=∠FCA=135°

∴∠DCF=135°﹣45°=90°

∴△FCD为直角三角形.

又∵四边形ADEF是正方形,对角线AE与DF相交于点O,

∴OC= DF,

∴OC=OA

∴△AOC是等腰三角形


【解析】(1)设法证明△BAD≌△CAF与∠FCD=90°即可;(2)与(1)同法;(3)中的①与(1)相同,可证明BD=CF,又点D、B、C共线,故:CD=BC+CF;②由(1)猜想并证明BD⊥CF,从而可知△FCD为直角三角形,再由正方形的对角线的性质判定△AOC三边的特点,再进一步判定其形状.
【考点精析】本题主要考查了等腰三角形的性质的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网