题目内容

【题目】如图,ADABC的角平分线,以AD为弦的⊙OABACEF,已知EFBC.

(1)求证:BC是⊙O的切线;

(2)若已知AE=9CF=4,求DE长;

(3)在(2)的条件下,若∠BAC=60°,求tanAFE的值及GD长.

【答案】(1)证明见解析;(2)DE的长是6;

tanAFE的值为GD长为

【解析】1)连接DO,并延长交O于点P

ADABC的角平分线,

∴∠DAE=∠DAF

ODEF

EFBC

ODBCD是半径OD的外端,

BCO的切线;

2DP是直径,

∴∠DFP=90°

∴∠P+∠PDF=90°

∵∠FDC+∠PDF=90°

∴∠P=∠FDC=∠DAF=∠DAE

四边形AEDF内接于圆,

∴∠AED=∠DFC

AEDDFC

DE=DF

DE2=AE×CF=9×4=36

DE=6

3如图,过E点作EHADH点,

∵∠BAC=60°

∴∠DAE=BAC=30°

EH=AE=

由勾股定理得,AH=DH=

tanAFE=tanADE=

AD=+

∴∠EAD=∠DEF

EDA=∠GDE

EDAGDE

img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/28/23/8a524687/SYS201712282305342279559724_DA/SYS201712282305342279559724_DA.018.png" width="189" height="67" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网