题目内容

【题目】如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.
(1)求BD的长;
(2)若△DCN的面积为2,求四边形ABNM的面积.

【答案】
(1)解:∵平行四边形ABCD,

∴AD∥BC,AD=BC,OB=OD,

∴∠DMN=∠BCN,∠MDN=∠NBC,

∴△MND∽△CNB,

∵M为AD中点,

∴MD= AD= BC,即 =

= ,即BN=2DN,

设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,

∴x+1=2(x﹣1),

解得:x=3,

∴BD=2x=6;


(2)解:∵△MND∽△CNB,且相似比为1:2,

∴MN:CN=DN:BN=1:2,

∴SMND= SCND=1,SBNC=2SCND=4.

∴SABD=SBCD=SBCN+SCND=4+2=6

∴S四边形ABNM=SABD﹣SMND=6﹣1=5.


【解析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到SABD=SBCD=SBCN+SCND , 最后由S四边形ABNM=SABD﹣SMND求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网