题目内容

【题目】如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.
(1)求证:EA是⊙O的切线;
(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;
(3)已知AF=4,CF=2.在(2)条件下,求AE的长.

【答案】
(1)证明:如图1,连接CD,

∵AC是⊙O的直径,

∴∠ADC=90°,

∴∠ADB+∠EDC=90°,

∵∠BAC=∠EDC,∠EAB=∠ADB,

∴∠EAC=∠EAB+∠BAC=90°,

∴EA是⊙O的切线.


(2)证明:如图2,连接BC,

∵AC是⊙O的直径,

∴∠ABC=90°,

∴∠CBA=∠ABC=90°

∵B是EF的中点,

∴在RT△EAF中,AB=BF,

∴∠BAC=∠AFE,

∴△EAF∽△CBA.


(3)解:∵△EAF∽△CBA,

=

∵AF=4,CF=2.

∴AC=6,EF=2AB,

= ,解得AB=2

∴EF=4

∴AE= = =4


【解析】(1)连接CD,由AC是⊙O的直径,可得出∠ADC=90°,由角的关系可得出∠EAC=90°,即得出EA是⊙O的切线,(2)连接BC,由AC是⊙O的直径,可得出∠ABC=90°,由在RT△EAF中,B是EF的中点,可得出∠BAC=∠AFE,即可得出△EAF∽△CBA,(3)由△EAF∽△CBA,可得出 = ,由比例式可求出AB,由勾股定理得出AE的长.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网