题目内容
实践操作:如图,△ABC是直角三角形,∠ACB=900,利用直尺和圆规按下列要求作图,并在图中表明相应的字母。(保留痕迹,不写作法)
(1)作BAC的平分线,交BC于点O;
(2)以O为圆心,OC为半径作圆。
综合运用:在你所作的图中,
(1)AB与⊙O的位置关系是 ;(直接写出答案)
(2)若AC=5,BC=12,求⊙O的半径。
(1)作BAC的平分线,交BC于点O;
(2)以O为圆心,OC为半径作圆。
综合运用:在你所作的图中,
(1)AB与⊙O的位置关系是 ;(直接写出答案)
(2)若AC=5,BC=12,求⊙O的半径。
如图所示:
综合运用:
(1)相切。
(2)⊙O的半径为。
综合运用:
(1)相切。
(2)⊙O的半径为。
分析:实践操作:根据题意画出图形即可。
综合运用:
(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切:
∵AO是∠BAC的平分线,∴DO=CO。
∵∠ACB=90°,∴∠ADO=90°。
∵DO是⊙O的半径,∴AB与⊙O的位置关系是相切。
(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=12-x,再次利用勾股定理可得方程,再解方程即可。
解:实践操作:如图所示:
综合运用:
(1)相切。
(2)∵AC=5,BC=12,∴AD=5,。
∴DB=13-5=7。
设半径为x,则OC=OD=x,BO=12-x,
∴,解得:。
∴⊙O的半径为。
练习册系列答案
相关题目