题目内容
【题目】矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,3),直线与BC相交于点D,抛物线y=ax2+bx经过A、D两点.
(1)求抛物线的解析式;
(2)连接AD,试判断△OAD的形状,并说明理由.
(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)y=-x2+x.;(2)△OAD是直角三角形.(3)(5,0)或(5,-15)
【解析】
试题(1)根据题意可得出点D的纵坐标为3,代入直线解析式可得出点D的横坐标,从而将点D和点A的坐标代入可得出抛物线的解析式.
(2)分别求出OA、OD、AD的长度,继而根据勾股定理的逆定理可判断出△OAD是直角三角形.
(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,利用相似的性质分别得出点P的坐标即可.
试题解析:(1)由题意得,点D的纵坐标为3,
∵点D在直线上,
∴点D的坐标为(9,3),
将点D(9,3)、点A(10,0)代入抛物线可得:
,
解得:
故抛物线的解析式为:y=-x2+x.
(2)∵点D坐标为(9,3),点A坐标为(10,0),
∴OA=10,OD=,AD=,
从而可得OA2=OD2+AD2,
故可判断△OAD是直角三角形.
(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,
此时∠POM=∠DOA,∠OPM=∠ODA,
故可得△OPM∽△ODA,OP=OA=5,
即可得此时点P的坐标为(5,0)
②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,
由题意可得,点M的横坐标为5,代入直线方程可得点M的纵坐标为,
故可求得OM=
∵∠OP′M+∠OMN=∠DOA+∠OMN=90°,
∴∠OP′M=∠DOA,
∴△P′OM∽△ODA,
故可得,
即
解得:MP′=,
又∵点M的纵坐标=,
∴P′N==15,
即可得此时点P′的坐标为(5,-15)
综上可得存在这样的点P,点P的坐标为(5,0)或(5,-15)
【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x(分)分数段 | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
频数分布直方图
根据所给的信息,回答下列问题:
(1)m=________;n=________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在________分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的2000名学生中成绩是“优”等的约有多少人?