题目内容
【题目】在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值_____.
【答案】
【解析】
根据题意知AE=5t、BF=3t,证出=,且∠DAE=∠ABF=90°,证△ADE∽△BAF得∠2=∠3,结合∠3=∠4、∠1=∠2得∠1=∠4,即可知DF=DA,从而得62+(10﹣3t)2=102,解之可得t的值,继而根据0≤5t≤6且0≤3t≤10取舍可得答案.
解:如图,
∵四边形ABCD是矩形,
∴AB=DC=6cm,AD=BC=10cm,
根据题意知,AE=5t,BF=3t,
∵BC=10cm,DC=6cm,
∴==,==,
∴=,
又∵∠DAE=∠ABF=90°,
∴△ADE∽△BAF,
∴∠2=∠3,
∵AD∥BC,
∴∠3=∠4,
∴∠2=∠4,
∵∠1=∠2,
∴∠1=∠4,
∴DF=DA,即DF2=AD2,
∵BF=3t,BC=10,
∴CF=10﹣3t,∴DF2=DC2+CF2,即DF2=62+(10﹣3t)2,
∴62+(10﹣3t)2=102,
解得:t=或t=6,
∵0≤5t≤6且0≤3t≤10,
∴0≤t≤,
∴t=,
故答案为:.
练习册系列答案
相关题目