题目内容
【题目】有160个零件,平均分配给甲、乙两个车间加工,乙车间因另有紧急任务,所以在甲车间加工3小时后才开始加工,因此比甲车间迟20分钟完成。
(1)已知甲、乙两车间的生产效率的比是1:3,则甲、乙两车间每小时各能加工多少零件?
(2)如果零件总数为a个,(1)中其它条件不变,则甲、乙两车间每小时各加工多少个零件(用含a的式子表示).
【答案】
(1)解:设甲每小时加工x个零件,乙每小时加工3x个零件,由题意得:
﹣ +3= ,
解得:x=20,
经检验,x=20是原方程的解.
∴3x=60,
∴甲每小时加工20个零件,乙每小时加工60个零件;
(2)设甲每小时加工y个零件,乙每小时加工3y个零件,由题意得:
÷3y﹣ +3= ÷y,
y= ,
∴3y= ,
经检验,y= 是原方程的解.
故甲车间每小时加工 个零件,乙车间每小时加工 多少个零件.
【解析】(1)设甲每小时加工x个零件,乙每小时加工3x个零件,由工程问题的数量关系工作时间=工作总量÷工作效率建立方程求出其解即可;(2)设甲每小时加工y个零件,乙每小时加工3y个零件,由工程问题的数量关系工作时间=工作总量÷工作效率建立方程求出其解即可
【考点精析】关于本题考查的分式方程的应用,需要了解列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位)才能得出正确答案.
【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是x与y的几组对应值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).
【题目】为鼓励民众节约用电,城镇居民生活用电电费目前实行梯度收费,具体标准如下表:
月用电量(单位:千瓦时) | 单价(单位:元) |
150以内(含150) | 0.5 |
超过150但不超过300的部分(含300) | 0.6 |
300以上(不含300)的部分 | 0.8 |
(1)若月用电100千瓦时,应交电费多少元?若月用电200千瓦时,应交电费多少元?
(2)若某用户12月应交电费93元,该用户12月的用电量是多少?