题目内容
【题目】如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE与E点.
(1)求证:BD=DE+CE
(2)若直线AE绕点A旋转到图2所示的位置时(BD<CE)其余条件不变,问BD 与DE,CE的关系如何?请予以证明.
(3)若直线AE绕点A旋转到图3所示的位置时(BD>CE)其余条件不变,问BD 与DE,CE的关系如何?直接写出结果,不需证明.
【答案】
(1)
证明:∵BD⊥AE于D,CE⊥AE于E,
∴∠ADB=∠AEC=90°.
∵∠BAC=90°,∠ADB=90°,
∵∠ABD+∠BAD=∠CAE+∠BAD=90°,
∴∠ABD=∠CAE
在△ABD 和△CAE中,
∠ABD=∠CAE,∠ADB=∠CEA,AB=AC
∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE
∵AE=AD+DE,
∴BD=DE+CE
(2)
解:BD=DE﹣CE
证明如下:
∵BD⊥AE于D,CE⊥AE于E,
∴∠DAB+∠DBA=90°
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE.
在△DBA和△EAC中,
∠D=∠E=90°,∠DBA=∠CAE,AB=AC
△DBA≌△EAC(AAS)
∴BD=AE,AD=CE
BD=AE=DE﹣AD=DE﹣CE
(3)
解:∵BD⊥AE于D,CE⊥AE于E,
∴∠DAB+∠DBA=90°
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE.
在△DBA和△EAC中,
∠D=∠E=90°,∠DBA=∠CAE,AB=AC
△DBA≌△EAC(AAS)
∴BD=AE,AD=CE
又∵ED=AD+AE,
∴DE=BD+CE.
【解析】(1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(2)BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(3)同上理,BD=DE+CE仍成立.