题目内容
如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.
(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.
解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,
∴,解得:
。
∴抛物线解析式为:y=x2﹣2x﹣3;
(2)联立得:,解得:
,
。
∴D(4,5)。
对于直线y=x+1,当x=0时,y=1,∴F(0,1)。
对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3)。
∴EF=4。
过点D作DM⊥y轴于点M,
∴S△DEF=EF•DM=8。
解析试题分析:(1)利用待定系数法求二次函数解析式即可。
(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF的面积。

练习册系列答案
相关题目
(2013年浙江义乌10分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数.下表提供了部分采购数据.
采购数量(件) | 1 | 2 | … |
A产品单价(元/件) | 1480 | 1460 | … |
B产品单价(元/件) | 1290 | 1280 | … |
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的

(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完.在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.