题目内容

如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.
(1)求证:△O2CB是直角三角形;
(2)证明:数学公式

证明:(1)∵AO1是⊙O2的切线,
∴O1A⊥AO2
∴∠O2AB+∠BAO1=90°,
又O2A=O2C,O1A=O1B,
∴∠O2CB=∠O2AB,
∠O2BC=∠ABO1=∠BAO1
又∠O2CB+∠O2BC=∠O2AB+∠BAO1=90°
∴O2C⊥O2B,即O2C⊥O1O2
∴△O2CB是直角三角形;

(2)延长O2O1交⊙O1于点D,连接AD.
∵BD是⊙O1直径,
∴∠BAD=90°.
又由(1)可知∠BO2C=90°,
∴∠BAD=∠BO2C,又∠ABD=∠O2BC,
∴△O2BC∽△ABD,

∴AB•BC=O2B•BD又BD=2BO1
∴AB•BC=O2B•2BO1

分析:(1)⊙O1与⊙O2都过点A,AO1是⊙O2的切线,可证O1A⊥AO2,又O2A=O2C,O1A=O1B可证O2C⊥O2B,故可证.
(2)延长O2O1交⊙O1于点D连接AD,可证∠BAD=∠BO2C,又∠ABD=∠O2BC,三角形相似,进而证明出结论.
点评:本题主要考查切线的性质和相似三角形的判定,此题比较繁琐,做题时应该细心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网