题目内容
【题目】如图,△ABC 中,AB=AC,以 AB 为直径的⊙O 与 BC 相交于点 D, 与 CA 的延长线相交于点 E,过点 D 作 DF⊥AC 于点 F.
(1)试说明 DF 是⊙O 的切线;
(2)①当∠C= °时,四边形 AODF 为矩形;
②当 tanC= 时,AC=3AE.
【答案】(1)见解析;(2)①45°;②
【解析】
(1)由等腰三角形的性质可证∠ODB=∠C,从而OD//AC,可证OD⊥DF,即可解决问题;
(2)①当∠B=45°时,四边形ODEC是正方形,由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论;
②直接利用锐角三角函数关系得出BC的长,再利用直角三角形的性质得出DE的长.
解:(1)证明:连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD//AC,
∵DF⊥AC,
∴OD⊥DF,点D在⊙O上,
∴DF是⊙O的切线;
(2)45°,理由如下:
∵AB=AC,
∴∠ABC=∠C=45°,
∴∠BAC=90°,
∵∠ODF=∠AFD=90°,
∴四边形AODF为矩形;
(3),理由如下,
连接BE,
∵AB是直径,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE2=AB2-AE2 =8AE2,
即BE=AE,
在Rt△BEC中,tanC=.
故答案为:.
练习册系列答案
相关题目