题目内容
【题目】如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)
【答案】①②③
【解析】
根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明
AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.
∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,
∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,
∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,
∵∠OCF=∠DCF,∠BAE=∠OAE,
∴∠OCF=∠DCF=∠BAE=∠OAE=30°,
∴AE//CF,AE=CE,
∴四边形AECF是平行四边形,
∵AE=CE,
∴四边形AECF是菱形,故①正确,
∵∠BAE=30°,∠B=90°,
∴∠AEB=60°,
∴∠AEC=120°,故②正确,
设BE=x,
∵∠BAE=30°,
∴AE=2x,
∴x2+22=(2x)2,
解得:x=,
∴OE=BE=,
∴S菱形AECF=EFAC=××4=,故③正确,
∵∠ACB=30°,
∴AC=2AB,
∴BC==AB,
∴AB:BC=1:,故④错误,
综上所述:正确的结论有①②③,
故答案为:①②③
【题目】为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是( )
体温(℃) | 36.1 | 36.2 | 36.3 | 36.4 | 36.5 | 36.6 |
人数(人) | 4 | 8 | 8 | 10 | x | 2 |
A.这些体温的众数是8
B.这些体温的中位数是36.35
C.这个班有40名学生
D.x=8
【题目】某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:
频数 | 频率 | |
体育 | 25 | 0.25 |
美术 | 30 | a |
音乐 | b | 0.35 |
其他 | 10 | 0.1 |
请根据图完成下面题目:
(1)抽查人数为_____人,a=_____.
(2)请补全条形统计图;
(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?