题目内容

已知:如图,BD为⊙O的直径,BC为弦,A为BC弧中点,AF∥BC交DB的延长线于点F,AD交BC于精英家教网点E,AE=2,ED=4.
(1)求证:AF是⊙O的切线;
(2)求AB的长.
分析:(1)连接AO,证明AO⊥AF由切线的判定定理可以得出AF是⊙O的切线.
(2)先根据相似三角形的判定得到△ABE∽△ADB,从而根据相似三角形的对应边成比例即可得到AD的长.
解答:精英家教网(1)证明:连接OA,
∵A是BC弧的中点,
∴OA⊥BC.
∵AF∥BC,
∴OA⊥AF.
∴AF是⊙O的切线.

(2)解:∵∠BAE=DAB,∠ABE=∠ADB,
∴△ABE∽△ADB.
AB
AD
=
AE
AB

∴AB2=AE•AD=12.
∴AB=2
3
点评:此题主要考查切线的判定,平行线的性质及圆周角定理等知识点的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网