题目内容

已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.
分析:四边形BFDE的形状是菱形,由四边形ABCD是平行四边形,即可得AD∥BC,OB=OD,易证得△OED≌△OFB,可得DE=BF,即可证得四边形BEDF是平行四边形,又由EF⊥BD,即可证得四边形BEDF是菱形.
解答:答:四边形BFDE的形状是菱形,
理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,OB=OD,
∵∠EDO=∠FBO,∠OED=∠OFB,
∴△OED≌△OFB,
∴DE=BF,
又∵ED∥BF,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴?BEDF是菱形.
点评:考查了平行四边形的性质,垂直平分线的性质,全等三角形的判定等知识点,证明简单的线段相等,一般是通过全等三角形来证明的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网