题目内容

【题目】如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.

(1)求抛物线的解析式;

(2)求点D的坐标;

(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

【答案】解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3)。

设抛物线解析式为

将A(4,0)坐标代入得:0=4a+3,即

抛物线解析式为

(2)设直线AC解析式为(k≠0),

将A(4,0)与C(0,3)代入得:,解得:

直线AC解析式为

与抛物线解析式联立得:,解得:

点D坐标为(1,)。

(3)存在,分两种情况考虑:

当点M在x轴上方时,如图1所示:

四边形ADMN为平行四边形,DMAN,DM=AN,

由对称性得到M(3,),即DM=2,故AN=2,

N1(2,0),N2(6,0)。

当点M在x轴下方时,如图2所示:

过点D作DQx轴于点Q,过点M作MPx轴于点P,可得ADQ≌△NMP,

MP=DQ=,NP=AQ=3。

将yM=代入抛物线解析式得:

解得:xM=或xM=

xN=xM-3=

N3,0),N4,0)。

综上所述,满足条件的点N有四个:

N1(2,0),N2(6,0),N3,0),N4,0)。

【解析】

试题(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式,将A的坐标代入求出a的值,即可确定出抛物线解析式;。

(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标。

(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DMAN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得ADQ≌△NMP,MP=DQ=,NP=AQ=3,将y=代入得:,求出x的值,确定出OP的长,由OP+PN求出ON的长即可确定出N坐标。

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网