题目内容

如图,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形,下列结论中不一定正确的是(   )

A. AE=FC       B. AD=BC       C. BE=AF       D. ∠E=∠CFD

 

【答案】

D.

【解析】

试题分析:已知四边形AECF是等腰梯形可得AE=FC.又因为四边形ABCD是矩形可得AD=BC,∠AEB=CFD.

解答:解:已知四边形AECF是等腰梯形,可得AE=FC;

又∵四边形ABCD的矩形,可得AD=BC;

∵AB=CD,AE=FC,∠ABC=∠CDF,

∴△AEB≌△CFD,

∴∠AEB=∠CFD.

所以D不正确,

故选D.

考点: 1.等腰梯形的性质;2.矩形的性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网