题目内容

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.
分析:根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC-∠EAC代入数据进行计算即可得解.
解答:解:∵四边形ABCD为正方形,
∴∠DAC=∠ACB=45°,
∵AC=CE,
∴∠E=∠EAC,
∵2∠EAC=∠E+∠EAC=∠ACB=45°,
∴∠EAC=22.5°,
∴∠DAE=∠DAC-∠EAC=45°-22.5°=22.5°.
点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网