题目内容
如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.
分析:(1)首先在PA和PC的延长线上分别取点M、N,使AM=AE,CN=CF,可得PN=PM,则易证四边形EMFN是平行四边形,则可得ME=FN,∠EMA=∠CNF,即可证得△EAM≌△FCN,则可得PA=PC;
(2)由PA=PC,EP=PF,可证得四边形AFCE为平行四边形,易得△PED≌△PFB,则可得四边形ABCD为平行四边形,则四边形ABCD的面积=2×三角形ABD的面积
(2)由PA=PC,EP=PF,可证得四边形AFCE为平行四边形,易得△PED≌△PFB,则可得四边形ABCD为平行四边形,则四边形ABCD的面积=2×三角形ABD的面积
解答:(1)证明:在PA和PC的延长线上分别取点M、N,使AM=AE,CN=CF.则∠EMA=∠MEA,∠CNF=∠CFN.
∵AP+AE=CP+CF,
∴PM=PN,
∵PE=PF,
∴四边形EMFN是平行四边形.
∴ME=FN,∠EMA=∠CNF.
在△EAM与△FCN中,
.
∴△EAM≌△FCN(ASA).
∴AM=CN.
∵PM=PN,
∴PA=PC;
(2)解:∵PA=PC,EP=PF,
∴四边形AFCE为平行四边形.
∴AE∥CF.
在△PED与△PFB中,
,
∴△PED≌△PFB(AAS).
∴DP=PB.
由(1)知PA=PC,
∴四边形ABCD为平行四边形.
∵BD=12,AB=15,∠DBA=45°,
∴四边形ABCD的面积为:2×
BD•AB•sin45°=12×15×
=90
.
答:四边形ABCD的面积是90
.
∵AP+AE=CP+CF,
∴PM=PN,
∵PE=PF,
∴四边形EMFN是平行四边形.
∴ME=FN,∠EMA=∠CNF.
在△EAM与△FCN中,
|
∴△EAM≌△FCN(ASA).
∴AM=CN.
∵PM=PN,
∴PA=PC;
(2)解:∵PA=PC,EP=PF,
∴四边形AFCE为平行四边形.
∴AE∥CF.
在△PED与△PFB中,
|
∴△PED≌△PFB(AAS).
∴DP=PB.
由(1)知PA=PC,
∴四边形ABCD为平行四边形.
∵BD=12,AB=15,∠DBA=45°,
∴四边形ABCD的面积为:2×
1 |
2 |
| ||
2 |
2 |
答:四边形ABCD的面积是90
2 |
点评:此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.
练习册系列答案
相关题目