题目内容
【题目】如图,已知AB是⊙O的弦,AC是⊙O的直径,D为⊙O上一点,过D作⊙O的切线交BA的延长线于P,且DP⊥BP于P.若PD+PA=6,AB=6,则⊙O的直径AC的长为( )
A. 5 B. 8 C. 10 D. 12
【答案】C
【解析】分析:通过切线的性质表示出EC的长度,用相似三角形的性质表示出OE的长度,由已知条件表示出OC的长度即可通过勾股定理求出结果.
详解:如图:连接BC,并连接OD交BC于点E:
∵DP⊥BP,AC为直径;
∴∠DPB=∠PBC=90°.
∴PD∥BC,且PD为⊙O的切线.
∴∠PDE=90°=∠DEB,
∴四边形PDEB为矩形,
∴AB∥OE,且O为AC中点,AB=6.
∴PD=BE=EC.
∴OE=AB=3.
设PA=x,则OD=DE-OE=6+x-3=3+x=OC,EC=PD=6-x.
.在Rt△OEC中:
,
即:,解得x=2.
所以AC=2OC=2×(3+x)=10.
练习册系列答案
相关题目