题目内容
【题目】如图,CE是⊙O的直径,BC切⊙O于点C,连接OB,作ED∥OB交⊙O于点D,BD的延长线与CE的延长线交于点A.
(1)求证:AB是⊙O的切线;
(2)若⊙O的半径为1,tan∠DEO=,tan∠A=,求AE的长.
【答案】(1)证明见解析;(2)
【解析】(1)连接OD,由ED∥OB,得到∠1=∠4,∠2=∠3,通过△DOB≌△COB,得到∠ODB=∠OCB,而由BC切⊙O于点C得出∠OCB=90°,那么∠ODB=90°,问题得证;
(2)根据三角函数tan∠DEO=tan∠2=,得出BC=OC=,再由tan∠A=,得出AC=4BC=4,那么AE=AC﹣CE=4﹣2.
(1)连接OD,如图.
∵ED∥OB,
∴∠1=∠4,∠2=∠3,
∵OD=OE,
∴∠3=∠4,
∴∠1=∠2.
在△DOB与△COB中,
,
∴△DOB≌△COB,
∴∠ODB=∠OCB,
∵BC切⊙O于点C,
∴∠OCB=90°,
∴∠ODB=90°,
∴AB是⊙O的切线;
(2)∵∠DEO=∠2,
∴tan∠DEO=tan∠2=,
∵⊙O的半径为1,OC=1,
∴BC=,
tan∠A=,
∴AC=4BC=4,
∴AE=AC﹣CE=4﹣2.
【题目】如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )
A. ∠1=∠2B. ∠1=2∠2C. ∠1=3∠2D. ∠1=4∠2
【题目】某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;
(1)m=______,n=______.
(2)补全频数分布直方图;
(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人.
成绩x(分) | 频数(人) | 频率 |
50≤x<60 | 5 | 5% |
60≤x<70 | 15 | 15% |
70≤x<80 | 20 | 20% |
80≤x<90 | m | 35% |
90≤x≤100 | 25 | n |