题目内容
【题目】在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.
(1)求直线BC的解析式.
(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.
(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)y=x+2;(2),t=秒或t=+4秒时,△DSN≌△BOC;(3)M(+4)或M()或M().
【解析】
(1)求出B,C的坐标,由待定系数法可求出答案;
(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.分两种情况:(Ⅰ)当点M在线段AB上运动时,(Ⅱ)当点M在线段AB的延长线上运动时,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;
(3)设点M(a,﹣a+2),N(b,),P(2,c),点B(0,2),分三种情况:(Ⅰ)当以BM,BP为邻边构成菱形时,(Ⅱ)当以BP为对角线,BM为边构成菱形时,(Ⅲ)当以BM为对角线,BP为边构成菱形时,由菱形的性质可得出方程组,解方程组即可得出答案.
解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,
∴x=0时,y=2,y=0时,x=2,
∴A(2,0),B(0,2),
∴OB=AO=2,
在Rt△COB中,∠BOC=90°,∠BCA=30°,
∴OC=2,
∴C(﹣2, 0),
设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,
,
∴k=,b=2,
∴直线BC的解析式为y=x+2;
(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.
(Ⅰ)如图1,当点M在线段AB上运动时,
∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,
∴∠BAO=∠ABO=45°,
∵∠BCO=30°,
∴NP=MQ=t,
∵MQ⊥x轴,NP⊥x轴,
∴∠NPQ=∠MQA=90°,NP∥MQ,
∴四边形NPQM是矩形,
∴NS∥x轴,
∵AD⊥x轴,
∴AS∥MQ∥y轴,
∴四边形MQAS是矩形,
∴AS=MQ=NP=t,
∵NS∥x轴,AS∥MQ∥y轴,
∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,
∴当DS=BO=2时,
△DSN≌△BOC(AAS),
∵D(2, +2),
∴DS=+2﹣t,
∴+2﹣t=2,
∴t=(秒);
(Ⅱ)当点M在线段AB的延长线上运动时,如图2,
同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),
∵DS=t﹣(+2),
∴t﹣(+2)=2,
∴t=+4(秒),
综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.
(3)存在以M、B、N、P为顶点的四边形是菱形:
M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).
∵M是直线AB在第二象限上的一点,点N,P分别在直线BC,直线AD上,
∴设点M(a,﹣a+2),N(b, b+2),P(2,c),点B(0,2),
(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,
∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,
∴∠DBA=∠MBN=∠PBN=75°,
∴∠MBE=45°,∠PBF=30°,
∴MB=ME,PF=AP,PB=2PF=AP,
∵四边形BMNP是菱形,
∴,
解得,a=﹣2﹣2,
∴M(﹣2﹣2,2+4)(此时点N与点C重合),
(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,
过点B作EF∥x轴,ME⊥EF,NF⊥EF,
同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,
由四边形BMNP是菱形和BM=BN得:
,
解得:a=﹣2﹣4,
∴M(﹣2﹣4,2+6),
(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,
作NE⊥y轴,BF⊥AD,
∴∠BNE=30°,∠PBF=60°,
由四边形BMNP是菱形和BN=BP得,
,
解得:a=﹣2+2,
∴M(﹣2+2,2).
综合上以得出,当以M、B、N、P为顶点的四边形是菱形时,点M的坐标为:
M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).
【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
与计划量的差值 |
|
|
|
|
|
|
|
(1)根据记录的数据可知前三天共卖出 ______ 斤;
(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;
(3)本周实际销售总量达到了计划数量没有?
(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?