题目内容
【题目】如图,∠AOB=90°,且OA、OB分别与反比例函数、的图象交于A、B两点,则tan∠OAB的值是______.
【答案】
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S△AOC=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得,然后由正切函数的定义求得答案.
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
∴,
∵点A在反比例函数的图象上,点B在反比例函数的图象上,
∴S△OBD=,S△AOC=2,
∴,
∴tan∠OAB=.
故答案为:.
练习册系列答案
相关题目