题目内容

【题目】如图,四边形ABCD、为正方形,连接AG、CE.

(1)
求证:AG=CE
(2)求证:AG⊥CE.

【答案】
(1)

证明:∵四边形ABCD、BEFG均为正方形,

∴AB=CB,∠ABC=∠GBE=90°,BG=BE,

∴∠ABG=∠CBE,

在△ABG和△CBE中,

∴△ABG≌△CBE(SAS),

∴AG=CE;


(2)

证明:如图所示:∵△ABG≌△CBE,

∴∠BAG=∠BCE,

∵∠ABC=90°,

∴∠BAG+∠AMB=90°,

∵∠AMB=∠CMN,

∴∠BCE+∠CMN=90°,

∴∠CNM=90°,

∴AG⊥CE.


【解析】(1)由正方形的性质得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,由SAS证明△ABG≌△CBE,得出对应边相等即可;
(2)由△ABG≌△CBE,得出对应角相等∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.
此题根据全等三角形的判定和正方形的相关性质即可解答。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网