题目内容

【题目】一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(请用“画树状图”或“列表”等方法写出分析过程);
(2)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为 ,求n的值.

【答案】
(1)解:列表:

(红,红)

(红,红)

(白,红)

(红,红)

(红,红)

(白,红)

(红,白)

(红,白)

(白,白)

∴共有9种等可能的结果,其中符合条件的有4种情况,

∴P(两次摸到球颜色不同)=


(2)解:由题意得 =

解得:n=5,

经检验,n=5是所列方程的根,且符合题意


【解析】(1)列表得出所有等可能的情况数,找出两次摸出的球恰好颜色不同的情况,即可求出所求的概率;(2)根据题意列出关于n的方程,求出方程的解即可得到n的值.
【考点精析】本题主要考查了列表法与树状图法的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网