题目内容
【题目】如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③.
其中正确的是
A. ①② B. ①③ C. ②③ D. ①②③
【答案】B
【解析】
∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2。
∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°。∴AB=AF=AD。
在Rt△ABG和Rt△AFG中,∵AG=AG,B=AF,∴Rt△ABG≌Rt△AFG(HL)。∴BG=FG,
设BG=FG=x,则EG=EF+FG=1+x,CG=3﹣x,
在Rt△CEG中,EG2=CG2+CE2,即,解得,。∴。
∴BG=CG=,即点G是BC中点,故①正确。
∵,∴∠AGB≠60°。∴∠CGF≠180°﹣60°×2≠60°。
又∵BG=CG=FG,∴△CGF不是等边三角形。∴FG≠FC,故②错误。
△CGE的面积=CGCE=××2=,
∵EF:FG=1:=2:3,∴,故③正确。
综上所述,正确的结论有①③。故选B。
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)