题目内容
【题目】如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB,BC,CA分别相切于点D,E,F.
(1)求证:BE=CE;
(2)若∠A=90°,AB=AC=2,求⊙O的半径.
【答案】(1)证明见解析;(2).
【解析】
试题(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案;
(2)首先连接OD、OE,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.
试题解析:(1)∵⊙O是△ABC的内切圆,切点为D、E、F,∴AD=AF,BD=BE,CE=CF.
∵AB=AC,∴AB-AD=AC-AF,即BD=CF.
∴BE=CE.
(2)如图,连接OD、OF,
∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°.
又OD=OF,∴四边形ODAF是正方形.
设OD=AD=AF=r,则BE=BD=CF=CE=.
在△ABC中,∠A=90°,∴.
又BC=BE+CE,∴,解得:r=.
∴⊙O的半径是.
练习册系列答案
相关题目