题目内容

【题目】如图,在RtABC中,∠ACB90°tanA,点DE分别在边ABAC上,DEACDE3DB10.求DC的长.

【答案】

【解析】

先在RtADE中利用正切的定义得到AE4,则利用勾股定理可计算出AD5,所以AB15,再在RtABC中利用正切得到tanA,设BC3x,则AC4xAB5x,所以5x15,解出x得到AC12,然后求出CE的长,再利用勾股定理计算CD即可.

解:∵DEAC

∴∠DEA90°

RtADE中,tanA

DE3

AE4

AD5

ABBD+AD10+515

RtABC中,tanA

BC3x,则AC4x

AB5x

5x15,解得x3

AC4x12

CEACAE1248

RtCDE中,CD

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网