题目内容
【题目】如图,的半径为,点是外的一点,,点是上的一个动点,连接,直线垂直平分,当直线与相切时,的长度为( )
A. 10 B. C. 11 D.
【答案】B
【解析】
连接OA、OC(C为切点),过点O作OB⊥AP.根据题意可知四边形BOCD为矩形,从而可知:BP=8+x,设AB的长为x,在Rt△AOB和Rt△OBP中,由勾股定理列出关于x的方程解得x的长,从而可计算出PA的长度.
如图所示.连接OA、OC(C为切点),过点O作OB⊥AP.
设AB的长为x,在Rt△AOB中,OB2=OA2-AB2=16-x2,
∵l与圆相切,
∴OC⊥l.
∵∠OBD=∠OCD=∠CDB=90°,
∴四边形BOCD为矩形.
∴BD=OC=4.
∵直线l垂直平分PA,
∴PD=BD+AB=4+x.
∴PB=8+x.
在Rt△OBP中,OP2=OB2+PB2,即16-x2+(8+x)2=102,解得x=.
PA=2AD=2×(+4)= .
故选B.
练习册系列答案
相关题目