搜索
题目内容
如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD
2
=______.
试题答案
相关练习册答案
由勾股定理可知OB=
5
,OC=
6
,OD=
7
∴OD
2
=7.
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一母线AC上,问它爬行的最短路线是多少?
如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.
(1)求证:DE⊥AB;
(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;
S
△ABD
=
1
2
c(c+x)
你能借助本题提供的图形,证明勾股定理吗?试一试吧.
如2,字母A所在的正方形面积是( )
A.224
B.338
C.144
D.313
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c.
(1)已知a=40,c=41,求b;
(2)已知a:b=3:4,c=15,求b;
(3)已知c=50,a=30,CD⊥AB于D,求CD.
木工师傅为了让直尺经久耐用,常常在直尺的直角顶点与斜边之间加一个小木条,如左图所示.右图为其示意图.若∠BAC=90°,线段AB的长为5,线段AC的长为12,试求出小木条AD的最短长度.
如图,Rt△ABC中,∠C=90°,点D、E分别在AB、AC上,且DE⊥AB.若DE将ABC分成面积相等的两部分,且S
△ABC
=20,AE=8,则AD=______.
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图1中直接三角形叙述勾股定理.
以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;
利用图2中的直角梯形,我们可以证明
a+b
c
<
2
.其证明步骤如下:
∵BC=a+b,AD=______;
又∵在直角梯形ABCD中有BC______AD(填大小关系),即______.
∴
a+b
c
<
2
.
如图,有一个圆锥形的粮堆,其主视图是边长为6cm的正三角形,母线的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是______(结果不取近似数)
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总