题目内容
【题目】如图,AB是⊙O的直径,点C在⊙O上,连接AC,BC,点D是BA延长线上一点,且AC=AD,若∠B=30°,AB=2,则CD的长是( )
A.
B.2
C.1
D.
【答案】D
【解析】解:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°.
∵∠B=30°,
∴∠BAC=60°.
∵AC=AD,
∴∠D=∠ACD=30°.
∵OC=OB,∠B=30°,
∴∠DOC=60°,
∴∠OCD=90°.
∵AB=2,
∴OC=1,
∴CD= = = .
故选D.
【考点精析】通过灵活运用圆周角定理,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半即可以解答此题.
练习册系列答案
相关题目