题目内容

【题目】如图,在直角△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.

(1)求证:MD=ME;
(2)填空:连接OE,OD,当∠A的度数为时,四边形ODME是菱形.

【答案】
(1)证明:在Rt△ABC中,点M是AC的中点,

∴MA=MB,

∴∠A=∠MBA;

∵四边形ABED是圆内接四边形,

∴∠ADE+∠ABE=180°,

而∠ADE+∠MDE=180°,

∴∠MDE=∠MBA;

同理可得∠MED=∠A,

∴∠MDE=∠MED,

∴MD=ME


(2)60°
【解析】解:(2)当∠A=60°时,
则∠ABM=60°,
∴△OAD和△OBE为等边三角形,
∴∠BOE=60°,
∴∠BOE=∠A,
∴OE∥AC,
同理可得OD∥BM,
∴四边形DOEM为平行四边形,
而OD=OE,
∴四边形ODME是菱形.
故答案为60°.

(1)利用直角三角形斜边上的中线性质得MA=MB,则∠A=∠MBA,再利用圆内接四边形的性质证明∠MDE=∠MED,于是得到MD=ME;(2)先证明△OAD和△OBE为等边三角形,再证明四边形DOEM为平行四边形,然后加上OD=OE可判断四边形ODME是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网